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1 ABSTRACT 

World trade volumes are exploding, with cargo containers totalling an estimated 500 million TEU 

(Twenty-foot equivalent units) shipped globally in 2012. At the same time, security requirements 

and transport regulations are increasingly stringent, putting significant pressure on the 

infrastructure at transport hubs and borders. In order to meet ambitious aims set by authorities, 

such as the inspection of every US-bound container, there is a pressing need to devise procedures 

to cope with high trade volumes while minimising the impact on the stream-of-commerce (SoC). 

Non-invasive inspection systems such as X-ray instruments are routinely used to image the content 

of cargo containers. Imaging can be combined with risk analysis based on shipping manifest 

information (e.g. origin, destination) to selectively target containers that will undergo a costly and 

time-consuming physical inspection. However, the number of trained operators is insufficient to 

systematically assess all X-ray images acquired. Image processing algorithm are often embedded in 

X-ray inspection system to enhance the image so that inspection times are reduced and accuracy 

improved. However, there is surprisingly little literature on the use of modern machine vision 

techniques for the automated detection of undeclared objects or threats in X-ray cargo images. 

We have developed a deep learning framework for the classification of X-ray cargo images according 

to their content. This framework is based on convolutional neural networks (CNNs), a class of 

artificial neural networks that currently is the state-of-the-art in many areas of machine-learning 

and –vision. The performance of CNNs is better by a significant margin than previous methods and 

they have achieved better than human-level performance in some tasks, including photographic 

image classification. To our knowledge, CNNs have not yet been applied to X-ray cargo image 

classification. 
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CNNs typically require very large training datasets, the acquisition of which is costly and impractical 

for cargo images. However, the multiplicative nature of the X-ray transmission image formation 

process enables “sufficiently realistic” training images to be generated by projecting the objects to 

detect into SoC images. 

In this contribution, we present an overview of our deep learning framework and present 

preliminary results, including a comparison to a more conventional approach we previously 

proposed for object detection in X-ray cargo container images. While our focus has been on cargo 

containers, we expect the framework to generalise to X-ray images of other vehicles and luggage. 

As such, this research is expected to contribute to the development of specialised software 

packages to assist operators through partial automation of the inspection workflow. 

2 INTRODUCTION 

It is estimated that the number of cargo containers shipped globally every year surpassed 500 

million twenty-foot equivalent units (TEU) in 2012. As world trade volumes increase, so does the 

pressure on the security infrastructure at borders and transport hubs such as airports and ports.  

This pressure is further compounded by increasingly stringent regulations and policies set by 

governing bodies, such as an ambitious plan aiming at imaging all United States-bound cargo 

containers (Archick, 2010).  

When crossing a security checkpoint, cargo containers are typically first subjected to a risk analysis 

based on the information provided in the shipping manifest such as countries of origin and 

destination or declared content (King, 2005; Weele and Ramirez-Marquez, 2010). The containers 

can also be imaged, either as a result of being flagged as suspicious by the risk analysis, or as part 

of a systematic imaging strategy. Cargo container imaging can be carried out using various non-

invasive inspection systems, though X-ray transmission scanners are typically preferred where high 

energy radiation is required to penetrate through metallic walls (McDaniel et al., 2005). Both risk 

analysis and imaging are critical for the effective selection of suspicious containers that should 

undergo physical inspection, a costly and lengthy process that severely impedes the flow of 

commerce. 

Machine vision techniques can be applied to cargo and luggage X-ray transmission images for image 

enhancement and automated analysis. Image enhancements, which represent the vast majority of 

such applications, aim at processing images in ways that facilitate their inspection by operators  

(Abidi et al., 2006, 2005; Ogorodnikov and Petrunin, 2002; Woodell et al., 2005). In contrast, 
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examples of automated analysis remain surprisingly rare in the literature (Mery, 2014) and mainly 

focus on X-ray images of baggage. For instance, support vector machines (SVM, a class of machine 

learning algorithms) and bag of words (BOW, a type of image descriptor) were used to detect threat 

objects in luggage images (Bastan et al., 2011; Flitton et al., 2015; Turcsany et al., 2013). Recently, 

automated analysis was applied to X-ray images of cargo containers, with the aim to classify their 

content into different categories (Tuszynski et al., 2013; Zhang et al., 2014). The performance 

reported by these studies remain relatively low, underlining the challenges associated with the 

automated classification of X-ray cargo images. Indeed, these images are noisy, cluttered, have a 

skewed perspective, and the objects they contain are transparent and can overlap (Bastan et al., 

2011; McDaniel et al., 2005; Zhang et al., 2014). In addition, images can potentially contain any 

object that fits into a container, requiring automated schemes to suitably handle an extremely large 

variety of appearances and visual features. 

We previously proposed an X-ray cargo image classification framework that was specifically 

developed to tackle these challenges (Jaccard et al., 2014a). Images were encoded using histograms 

of oriented Basic Image Features (oBIFs), a type of image feature conveying texture information that 

has been successfully applied to a large variety of machine vision problems (Crosier and Griffin, 

2010; Jaccard et al., 2014b; Newell and Griffin, 2014). Classification of X-ray images based on 

histograms of oBIFs was learnt by an ensemble of random decision trees (Breiman, 2001), which 

typically perform as well or better than SVM while being much less demanding in terms of 

computational time. When applied to the detection of cars in cargo containers, this scheme 

delivered very high performance by detecting 100% of the cars, even those hidden behind other 

goods, with a false alarm rate lower than 1%. These encouraging results demonstrated the ability 

of such machine-learning schemes to perform well on X-ray cargo images.  

In this contribution, we present an alternative approach for X-ray cargo images classification using 

convolutional neural networks (CNNs), a class of learning algorithm often referred to as deep 

learning (LeCun et al., 2015). In contrast with our previous scheme where a set of hand-crafted 

features (oBIFs) were used as image descriptors, convolutional neural networks learn the 

representation of the data (i.e. image features) that optimises its classification. CNNs are currently 

the state-of-the-art for many machine vision applications, outperforming other methods by a 

significant margin, including for large-scale photographic image classification where they were 

shown to exceed Human performance (He et al., 2015). Although CNNs have been successfully 

applied to biomedical X-ray images (Bar et al., 2015; Cernazanu-Glavan and Holban, 2013), we could 
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not find published examples of their application to either cargo or luggage X-ray transmission 

images. 

We explore the use of CNNs for the classification of X-ray images of cargo containers. Despite novel 

regularisation techniques (Ioffe and Szegedy, 2015; Srivastava et al., 2014), CNNs still typically 

require very large datasets (e.g. 105 images) to prevent overfitting. Due to the monetary and time 

investment required for the acquisition of training X-ray cargo images, a method for the generation 

of synthetic images was devised. Preliminary classification results for small metallic threats are 

presented and compared to those obtained using our previous scheme based on hand-crafted 

features. This is a significantly more complex problem than car detection due to small threats not 

being restricted in size or orientation. Please note, we use the term ‘small metallic threats’ as we 

do not wish to make our research results easily discoverable by keyword searching. However, the 

objects in question are akin to small metallic objects (e.g. drill). 

3 MATERIALS AND METHODS 

3.1 Dataset and synthetic image generation 

All stream-of-commerce (SoC) images used in this study were acquired using a Rapiscan®R60 rail 

scanner. Synthetic threat images were generated by projecting threat objects into SoC images, thus 

creating an arbitrarily large dataset with high variability in background appearances (Figure 1). This 

was made possible by the multiplicative nature of the X-ray transmission image formation process, 

whereby the attenuation of the beam by multiple objects is approximately the product of their 

individual attenuations (McDaniel et al., 2005). 

A rectangular region of interest (ROI) encompassing the threat object to project was first defined by 

the user. A threat patch obtained by cropping the image was then manually annotated at a pixel 

level to produce two binary masks: a threat mask containing pixels corresponding to the threat, and 

an ignore mask that contains pixels of other non-background objects present in the threat patch. A 

rough background subtraction was then carried out by dividing the intensity of the pixels within the 

threat mask by the mean intensity of the threat patch pixels, ignoring pixels from the threat and 

ignore masks. Finally, the resulting threat object could be projected into a SOC image by 

multiplication. 
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Figure 1 Example of threat insertion into a stream-of-commerce (SoC) image. Note that this example does not depict 

an actual threat object used in this study for security reasons. 

 

In total, approximately 700 threat objects spanning the range of possible orientations (e.g. multiple 

degrees of in-plane rotations) were manually segmented. 12,000 512×512 pixel background patches 

were randomly sampled from low to moderate density SOC images (similar to that shown in Figure 

1). Before sampling, cargo container images were pre-processed as previously described (Jaccard et 

al., 2014a). For each background patch, the dataset comprised a negative class image (the 

background patch itself) and a positive class image (the background patch with the inserted threat), 

for a total of 24,000 images. Having both the negative and positive images in the dataset was 

empirically found to improve CNNs performance. The threat object to insert into a patch was 

randomly sampled, positioned, and flipped (vertically and horizontally). The intensity of the inserted 

object was also varied by a factor between -5% and 5% to introduce some additional noise. Images 

were downscaled by a factor of two to 256×256 pixel in order to minimise training and inference 

time.  

About 20% of the dataset (≈4780 images across both classes) was used for testing and the rest for 

training. The training and testing sets were completely disjoint, with no overlaps in SOC backgrounds 

and threat objects inserted. The aim was to classify images in one of two classes (binary 

classification): negative class (no threat in image) and positive class (threat in image). Classification 

performance was evaluated by the way of receiver operating characteristic curves (ROC, plots of 

true positive rate versus false alarm rates). ROC curves were generated by thresholding the classifier 

output probability for a given patch to be a member of the threat (positive) class. The area-under-

the-curve (AUC), as well as the recently introduced H-value (Hand, 2009) were used as metrics to 

quantitatively compare the performance of the approaches tested. 
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Table 3-1 Convolutional neural network architectures. Notation for convolutional layer is (receptive field size – 
number of channels) and for fully connected layers is (number of channels). Each convolutional layer and the first two 

fully connected layers are followed by a rectified linearity unit (ReLU, not shown for clarity). The two first fully 
connected layers are also followed by dropout (with probability set to 0.5). 

CNN – 9 layers CNN – 19 layers 

Input (256×256 grayscale image) 

Convolutional layer (13-16) 
Convolutional layer (3-8) 

Convolutional layer (3-8) 

Max pooling 

Convolutional layer (11-32) 
Convolutional layer (3-64) 

Convolutional layer (3-64) 

Max pooling 

Convolutional layer (9-64) 

Convolutional layer (3-128) 

Convolutional layer (3-128) 

Convolutional layer (3-128) 

Max pooling 

Convolutional layer (7-128) 

Convolutional layer (3-256) 

Convolutional layer (3-256) 

Convolutional layer (3-256) 

Max pooling 

Convolutional layer (5-256) 

Convolutional layer (3-512) 

Convolutional layer (3-512) 

Convolutional layer (3-512) 

Max pooling 

Convolutional layer (3-512) 

Convolutional layer (3-512) 

Convolutional layer (3-512) 

Convolutional layer (3-512) 

Max pooling 

Fully connected layer (4096) 

Fully connected layer (4096) 

Fully connected layer (2) 

Soft max 

3.2 Convolutional neural network implementation 

Convolutional neural networks (CNNs) were implemented using MatConvNet, an open source CNN 

implementation for MATLAB (Vedaldi and Lenc, 2015). A systematic evaluation of network 

architectures for X-ray image classification will be carried out in future work. However, two 

architectures stood out during preliminary experiments (see Table 3-1 for details). The first one is 

an architecture akin to early shallow models (Krizhevsky et al., 2012), with 9 layers. The second high 

performing architecture was a very deep network (Simonyan and Zisserman, 2014) with 19 layers. 

Both architectures have a similar number of parameters (5∙107 and 7∙107 parameters for 9- and 19-
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layer architectures, respectively) but differ significantly regarding the arrangement of their 

convolutional layers. The 9-layer CNN favours convolutional layers with large receptive fields 

(varying from 3 to 13 pixels) that are each followed by a pooling layer. In contrast, the 19-layer CNN 

only includes convolutional layers with small 3 pixels-wide receptive fields that are arranged in 

stacks of two or three in-between pooling layers. For both architectures, the learning rate was 

constant throughout training at 1∙10-3 while the weight decay for regularization was set to 2∙10-2 

and 5∙10-4 for the 9- and 19-layers CNN, respectively. Training was carried out using an Nvidia Titan 

X GPU. 

3.3 Classification using Basic Image Features and Random Forest classifiers 

Classification performance using CNNs was compared to that obtained using our previous oBIFs and 

Random Forest scheme (Jaccard et al., 2014a). For each 256×256 grayscale image, oBIFs were 

computed at four different scales (σ = 0.7, 1.4, 2.8, 5.6) and for two threshold parameter values (ε 

= 0.011, 0.1). The Random Forest classifier was made up of a thousand trees, with the mtry 

parameter (number of features randomly sampled at each split) set to 13 (i.e. the square root of the 

total number of features). Posterior probability was given by the fraction of trees assigning a given 

image to the threat (positive) class. 

4 RESULTS 

Threat X-Ray cargo image classification performance was evaluated for the CNN approaches (9- and 

19-layer) as well as for our previous scheme based on oBIFs and random decision trees. Figure 2 

shows the ROC curves obtained for these three approaches while summary metrics are shown in 

Table 4-1. 
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Figure 2 ROC curves for threat X-ray image classification using CNNs (in orange and yellow) and our previous scheme 

(oBIFs + Random Forest, in blue). These curves were obtained using the testing dataset. 

 

Whereas our previous scheme excelled at detecting cars in X-ray cargo images, its performance for 

the detection of small metallic threats was underwhelming. For a 90% true positive rate, which is a 

reasonable target for such systems, the oBIFs and Random Forest resulted in a false positive rate 

greater than 21%. In contrast, using CNNs resulted in less than 1% false alarms for the same true 

positive rate. Both the AUC and H-value also reflected the substantial improvement in classification 

performance delivered by deep learning and showed that the 19-layer CNN consistently 

outperformed the 9-layers architecture. 

Table 4-1 Quantitative metrics for the comparison of our previous scheme (oBIFs + Random Forest) and CNN. AUC is 

the area under the ROC curve. PFR and TPR stand for false positive and true positive rates, respectively. These results 

were obtained using the testing dataset. 

Method AUC H-value FPR for 90% TPR [%] 

oBIFs + Random Forest 0.9414 0.6252 21.02 

CNN (9-layer) 0.9914 0.8868 0.92 

CNN (19-layer) 0.9942 0.9101 0.80 

The CNN approach successfully classified challenging images where threats were hidden amongst 

other goods or in the roof of the containers (Figure 3.A). Figure 3.B shows examples of false positive 

images (i.e. background images that were misclassified as containing threats). Many of them contain 

several objects with appearances similar to the inserted threats. It is also interesting to note that 

some images of empty containers were classified as containing a threat due to the presence of an 
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imaging artefact that resembled a small threat aligned with the X-ray beam’s direction (i.e. front 

view of the threat). 

Figure 3 Examples of true positive (A) and false positive (B) images after classification using the 19-layer CNN. The red 

boxes in (A) indicate the location of the inserted threat, the red arrow in (B) shows the location of an imaging artefact 

that was detected as threat by the CNN. 

 

5 CONCLUSION 

In this contribution, we presented a deep learning approach for the detection of small threats in X-

ray cargo images. A suitably-large dataset of synthetic images was generated by exploiting the 

multiplicative nature of the X-ray transmission imaging formation process. The two convolutional 

neural networks (CNN) architectures considered (9- and 19-layers) significantly outperformed our 

previous X-ray cargo image classification scheme based on hand-craft image features and random 

decision trees. These results suggest that similarly to other machine vision applications, CNNs might 

become the state-of-the-art in automated X-ray cargo image analysis. 

Future work will focus on a systematic evaluation of different CNN architectures and hyper-

parameters. There will also be a need to thoroughly characterise the synthetic image generation 

process and compare its accuracy with real images of threats placed amongst other goods.  
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