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Abstract
We evaluate transfer representation-learning for
anomaly detection using convolutional neural
networks by: (i) transfer learning from pre-
trained networks, and (ii) transfer learning from
an auxiliary task by defining sub-categories of
the normal class. We empirically show that both
approaches offer viable representations for the
task of anomaly detection, without explicitly im-
posing a prior on the data.

1. Introduction
Anomaly detection is a general term used to describe the
task of discovering data items that are historically atypical
with respect to expected behaviour patterns. For example,
an anomaly may indicate the presence of breast cancer in
mammograms (Dheeba et al., 2014), surface metal land-
mines in hyperspectral images (Ranney & Soumekh, 2006),
or hazardous algal blooms in satellite imagery of water sur-
face colour (Stumpf et al., 2003). Ergo, the concept of what
defines an anomaly will vary between application domains.
Due to this variation, it is often not a simple matter of trans-
ferring methodologies developed for a disparate task.

Many of the successes in pattern recognition and classifica-
tion are dependent on hand-crafted visual representations.
However, when only normal data is available, how do we
go about developing discriminative features for what is in
essence a binary-classification problem when we have only
seen one of the classes?

Deep representation-learning, in particular convolutional
neural networks (CNNs) (LeCun et al., 1998), offer a ver-
satile method for automatically discovering multiple lev-
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els of representation, within data, that are extremely adept
when utilised in tasks such as classification. Many of the
layers non-linearly transform their input, creating more ab-
stract, task-specific representations that are insensitive to
large unimportant variations, yet highly-tuned to the im-
portant particularities (LeCun et al., 2015). Furthermore,
these representations are often generic enough that they can
be transferred to dissimilar vision tasks and still achieve
highly competitive results (Donahue et al., 2013; Razavian
et al., 2014; Oquab et al., 2014; Zeiler & Fergus, 2014)
when compared with their more elaborate hand-engineered
counterparts.

In this paper, we investigate two representation-learning
frameworks for anomaly detection: (i) transfer learn-
ing of pre-trained deep convolutional representations, and
(ii) transfer learning of deep convolutional representations
from an auxiliary task. In the former, we transfer learn rep-
resentations from a related (sharing the same input space)
supervised domain to our tasks. In the latter, we learn rep-
resentations from scratch, on a moderately sized dataset,
by training a CNN to make distinctions within the normal
class. In both, our anomaly detection systems are strictly
constructed on normal data only. Moreover, we empirically
show that both approaches offer viable representations for
the task of anomaly detection, without explicitly imposing
a prior on the data.

We start by reviewing related work on representation-
learning, then move on to describe our anomaly detec-
tion tasks in Section 3. In Section 4, we detail our
representation-learning frameworks, and analyse the em-
pirical results in Section 5.

2. Related work
Our approach is related to transfer representation-learning,
where rich representations are learnt in a source task, using
convolutional neural networks, with the aim of transferring
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them to a different target task. Recent work has been highly
successful in leveraging CNN representations learnt on
large-scale, fully-supervised, computer vision datasets to
other visual tasks with insufficient training data, e.g. scene
classification (Donahue et al., 2013), object classification
(Zeiler & Fergus, 2014; Oquab et al., 2014), object localisa-
tion (Sermanet et al., 2013; Girshick et al., 2014), attribute-
detection and fine-grained recognition (Razavian et al.,
2014). Whilst many of the successes have primarily been
in supervised representation-learning, there is a growing
corpus of work on unsupervised representation-learning,
which focus on a discriminative approach, (Ahmed et al.,
2008; Collobert et al., 2011; Dosovitskiy et al., 2014),
based on the idea of creating auxiliary tasks in order to
learn robust, generic data representations.

3. Datasets
In order to evaluate the usefulness of transfer learnt repre-
sentations, we conceive a range of anomaly detection tasks,
listed in Table 1, with combinations of tight and diverse,
normal and anomaly classes, by employing the following
three datasets:

X-ray transmission images of freight containers (An-
drews et al., 2016) consists of 5,120 greyscale images of
freight containers containing cargo (non-empty) and con-
tainers containing no cargo (empty) sized 9 × 32. All im-
ages vary due to small differences in freight containers and
their furniture, while cargo images also vary in the cargo.

MNIST handwritten digits (LeCun et al., 1998) contains
a total of 70,000 greyscale handwritten digits 0 through 9
of size 28× 28.

Augmented CASIA-WebFace (Yi et al., 2014) consists of
988,828 greyscale celebrity face images of 10,575 subjects
sized 100× 100.

Table 1. Anomaly detection tasks.

# TASK NORMAL CLASS ANOMALY CLASS

1 MNIST-1 5 2
2 MNIST-2 5 0, 2, 4, 6, 8
3 MNIST-3 1, 3, 5, 7, 9 2
4 MNIST-4 1, 3, 5, 7, 9 0, 2, 4, 6, 8
5 X-RAY-1 EMPTY NON-EMPTY
6 X-RAY-2 NON-EMPTY EMPTY
7 CASIA MALE FEMALE

4. Representation-learning frameworks
Below we outline our approaches, which follow one of two
routes: (i) transfer learning of deep convolutional represen-

tations from a pre-trained CNN, or (ii) transfer learning of
deep convolutional representations from an auxiliary task.
For all extracted representations, we will use as a baseline
for comparison the original greyscale intensity image rep-
resentations (prior to any network processing, such as re-
sizing).

4.1. Transfer learning pre-trained representations

We utilise two publicly available1 pre-trained CNN models:
ImageNet-MatConvNet-VGG-F (VGG-F) and ImageNet-
MatConvNet-VGG-M (VGG-M), to transfer learn repre-
sentations, based on the networks outlined in (Chatfield
et al., 2014). The networks were trained for the image clas-
sification task ILSVRC 2012 (Russakovsky et al., 2015) us-
ing 1.2 million colour images of 1,000 diverse object cat-
egories. A shorthand notation of the architectures can be
found in Table 2.

Each image input to one of the networks is first prepro-
cessed: (i) it is resized to 224 × 224 × 3, and (ii) has the
mean image from the trained network subtracted. We ex-
tract representations learnt from layers: P5, FC6, FC7 and
FC8, which we rescale to unit length. Using tasks 1-6,
we assess the performance of these representations by ran-
domly selecting 2,048 normal samples for training a one-
class classifier and 1,024 (512 normal and 512 anomaly)
unseen samples for testing. This procedure is repeated
three times, with the test set kept fixed.

4.2. Transfer learning auxiliary representations

We formulate an auxiliary, fine-grained classification, task
so as to transfer learn representations. Our aim is to learn
a mapping from normal samples to their sub-category. To
assess this strategy, we use task 7, with sub-categories de-
fined as the identity of a male.

We select 5,045 male subjects consisting of 442,362 face
image samples. Next, we randomly sample without re-
placement 432,272 face images from the 5,045 subjects to
train a CNN on inputs of size 100 × 100 × 1 using gradi-
ent descent with momentum, batch normalisation (Ioffe &
Szegedy, 2015), and softmax loss. A shorthand notation of
the CNN (Male-5045) architecture can be found in Table
2. The hyper-parameters used are: momentum 0.9; weight
decay 5 · 10−4; initial learning rate 10−2 for the first 150
epochs, 10−3 for the next 75 epochs and 10−4 for the final
75 epochs. The layers are initialised from a standard Nor-
mal distribution, and the activation function for all weight
layers, except for the fully-connected layer, is the rectified
linear unit (ReLU).

For evaluation, we randomly select 20,180 male face im-

1Convolutional Neural Networks for MATLAB (MatCon-
vNet): http://www.vlfeat.org/matconvnet.

http://www.vlfeat.org/matconvnet
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ages used to learn the CNN, for training a one-class classi-
fier and 5,000 (2,500 male and 2,500 female) unseen sam-
ples for testing. We extract representations learnt from lay-
ers: P8 and FC9, which we rescale to unit length. This pro-
cedure is repeated three times, with the test set kept fixed.

4.3. Classification

Given a set of positive training samples, xi ∈ Rn, i =
1, 2, . . . , l, we apply a linear one-class ν-support vector
machine (OCSVM) (Schölkopf et al., 2001; Chang & Lin,
2011) to estimate the support of the high-dimensional dis-
tribution. The parameter ν ∈ (0, 1] is an upper bound on
the fraction of training samples considered out-of-class and
a lower bound on the fraction of training samples used as
support vectors (SVs). The OCSVM decision function for
a sample x is: f (x) =

∑l
i=1 αix

Txi−ρ, where 0 < αi <
1
νl are the coefficients of the SVs (αi = 0 otherwise) and ρ
is a bias term.

For each task, we obtain the area under the receiver oper-
ating characteristic (AUROC) averaged across 21 evenly
spaced values of the OCSVM hyper-parameter, ν ∈
[0.01, 0.99]. We report the mean and the standard devia-
tion attained on the fixed test set over the three trials.

5. Results and analysis
Here we analyse the results of transfer learning representa-
tions on our anomaly detection tasks.

5.1. Transfer learning pre-trained representations

Table 3 displays the results of the VGG-F and the VGG-M
network layers when applied to tasks 1-6. In both networks,
the pooling layer P5 is on average the top-performing rep-
resentation, followed by the fully-connected representation
FC7, which is marginally better than representations FC6

and FC8. This is to be expected, as the learnt weights
in the deeper layers become increasingly specific to the
task the network was trained for, thus making them less
generic to our semantically dissimilar datasets. Whereas,
the greyscale intensity images, GS, offer unreliable rep-
resentations, which is emphasised by their performance in
tasks 5 and 6. In task 5, when the normal class are empty
homogeneous freight containers it is commensurate with
the CNN representations, however when we swap the class
labels, as in task 6, and the normal class becomes the non-
empty heterogeneous (ranging from seemingly empty to
full) freight containers, the empties become inliers. Per-
forming a Wilcoxon signed rank test gives evidence of a
statistically significant difference (p-value of 0.03) between
each transfer learnt representation, from both networks,
and the greyscale intensity representation.

We also see from Table 3 that the VGG-F network out-
performs VGG-M. Moreover, a Wilcoxon signed rank test
gives a statistically significant difference (p-value of 0.00)
between the two. This is contrary to what was reported in
(Chatfield et al., 2014), where the VGG-M outperformed
the VGG-F when applied to the task it was trained for,
which was due to VGG-M utilising a decreased stride and
smaller filters in the first convolutional layer, in addition
to using more filters in convolutional layers 2-5. How-
ever, this may have made the VGG-M network more task-
specific, and therefore less generic to inputs that originate
from very different distributions to the network trained im-
ages.

5.2. Transfer learning auxiliary representations

Table 3 also displays the results of our trained Male-5045
CNN representations, P8 and FC9, with the greyscale in-
tensity image representation, GS. The pooling layer, P8,
is by far the best performer, followed by FC9, with the
greyscale intensity images, GS, being the worst. By per-

Table 2. GS indicates the greyscale intensity image and I is the preprocessed image input. C(d, f, s, p) indicates a convolutional layer
with d filters sized f × f , with stride s and zero-padding p. P (f ′, s′, p′) indicates a max-pooling layer with spatial size f ′ × f ′, with
stride s′ and zero-padding p′. FC(n) indicates a fully-connected layer with n neurons.

NETWORK ARCHITECTURE

VGG-F GS-I(224, 224, 3)-C1(64, 11, 4, 0)-P1(2, 2, 0)-C2(256, 5, 1, 2)-P2(2, 2, 0)-C3(256, 3, 1, 1)-C4(256, 3, 1, 1)-
C5(256, 3, 1, 1)-P5(2, 2, 0)-FC6(4096)-FC7(4096)-FC8(1000)

VGG-M GS-I(224, 224, 3)-C1(96, 7, 2, 0)-P1(2, 2, 0)-C2(256, 5, 2, 1)-P2(2, 2, 0)-C3(512, 3, 1, 1)-C4(512, 3, 1, 1)-
C5(512, 3, 1, 1)-P5(2, 2, 0)-FC6(4096)-FC7(4096)-FC8(1000)

MALE-5045 GS-I(100, 100, 1)-C1(32, 3, 1, 1)-C2(64, 3, 1, 1)-P2(2, 2, 0)-C3(64, 3, 1, 1)-C4(128, 3, 1, 1)-P4(2, 2, 0)-
C5(96, 3, 1, 1)-C6(256, 3, 1, 1)-P6(2, 2, 1)-C7(160, 3, 1, 1)-C8(320, 3, 1, 1)-P8(7, 1, 0)-FC9(5045)
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forming fine-grained classification, the CNN representation
space has been stretched, such that they have become sen-
sitive to the important details in the face images. Conse-
quently, this has created richer, and more abstract, repre-
sentations of the male face images, ergo making anoma-
lous female face images more perceptible. In addition, we
analyse the effectiveness of transfer learnt pooling layers,
P5, from the networks VGG-F and VGG-M on this task.
Again, we see that the pooling layer, P5, of the VGG-F
has superior performance over P5 of VGG-M. Whilst nei-
ther offer groundbreaking AUROC scores, especially P5 of
VGG-M which is worse than random guessing, it is inter-
esting to note the same occurrence as in tasks 1-6. That is,
VGG-F appears to exhibit more generalisable representa-
tions for disparate image datasets. A detailed analysis on
this phenomenon is beyond the scope of this paper and we
leave it for future work.

6. Discussion
Our proposed methods for transferring representations to
anomaly detection tasks: (i) transfer learning pre-trained

representations, and (ii) transfer learning auxiliary repre-
sentations by formulating a fine-grained classification task.
Our results strongly demonstrate the utility of transfer
learnt representations having made no prior assumptions on
the generating distributions of either the normal or anomaly
class. In the auxiliary task, we were able to better define the
concept of normality by learning how to discriminate be-
tween the sub-categories of the normal class. These results
clearly indicate that transfer learnt representations offer a
good baseline in a diverse range of tasks, and we believe
these results can be further improved with the use of hand-
crafted features, if domain expertise is available. Never-
theless, the results when transfer learning from pre-trained
CNNs show that it is not a simple matter of choosing a
pre-trained network that performed best at its original task.
Further analysis into the reasons behind this phenomenon
is required before one can draw any explicit conclusions.

Table 3. AUROC performance on the transfer learning representation tasks using CNNs VGG-F, VGG-M, and Male-5045, where bold
indicates the best performing representation in a task.

VGG-F MEAN ± STD AUROC OVER 3 TRIALS

TASK GS P5 FC6 FC7 FC8

#1: MNIST-1 0.5809 ± 0.0436 0.9382 ± 0.0066 0.8494 ± 0.0182 0.8395 ± 0.0187 0.8604 ± 0.0104
#2: MNIST-2 0.5089 ± 0.0298 0.8833 ± 0.0138 0.8948 ± 0.0150 0.9074 ± 0.0141 0.9239 ± 0.0051
#3: MNIST-3 0.4321 ± 0.0189 0.8500 ± 0.0072 0.7207 ± 0.0148 0.7000 ± 0.0150 0.6652 ± 0.0217
#4: MNIST-4 0.4315 ± 0.0089 0.7662 ± 0.0120 0.7151 ± 0.0061 0.7357 ± 0.0072 0.7240 ± 0.0033
#5: X-RAY-1 0.9983 ± 0.0000 0.9988 ± 0.0001 0.9992 ± 0.0000 0.9992 ± 0.0000 0.9989 ± 0.0000
#6: X-RAY-2 0.0358 ± 0.0128 0.9874 ± 0.0028 0.9847 ± 0.0034 0.9842 ± 0.0047 0.9744 ± 0.0050

AVERAGE 0.4979 ± 0.0190 0.9040 ± 0.0071 0.8607 ± 0.0096 0.8610 ± 0.0100 0.8578 ± 0.0076

VGG-M MEAN ± STD AUROC OVER 3 TRIALS

TASK GS P5 FC6 FC7 FC8

#1: MNIST-1 0.5809 ± 0.0436 0.8933 ± 0.0148 0.7519 ± 0.0131 0.7904 ± 0.0131 0.7925 ± 0.0194
#2: MNIST-2 0.5089 ± 0.0298 0.8543 ± 0.0144 0.8179 ± 0.0016 0.8461 ± 0.0015 0.8313 ± 0.0043
#3: MNIST-3 0.4321 ± 0.0189 0.8196 ± 0.0224 0.5604 ± 0.0828 0.5704 ± 0.0881 0.5679 ± 0.0741
#4: MNIST-4 0.4315 ± 0.0089 0.7593 ± 0.0174 0.5110 ± 0.0546 0.5201 ± 0.0486 0.4911 ± 0.0449
#5: X-RAY-1 0.9983 ± 0.0000 0.9977 ± 0.0001 0.9967 ± 0.0000 0.9978 ± 0.0001 0.9977 ± 0.0000
#6: X-RAY-2 0.0358 ± 0.0128 0.8099 ± 0.0557 0.9342 ± 0.0031 0.9455 ± 0.0027 0.9225 ± 0.0027

AVERAGE 0.4979 ± 0.0190 0.8557 ± 0.0208 0.7620 ± 0.0259 0.7784 ± 0.0257 0.7672 ± 0.0243

MALE-5045 MEAN ± STD AUROC OVER 3 TRIALS

TASK GS P5 (VGG-F) P5 (VGG-M) P8 FC9

#7: CASIA 0.4404 ± 0.0033 0.5456 ± 0.0014 0.4961 ± 0.0067 0.7849 ± 0.0032 0.7166 ± 0.0964
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